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A b s t r a c t  

Convent iona l  small-molecule methods of solving the phase 
problem from native data alone, without the use of heavy- 
atom derivatives, known fragment geometries or anoma- 
lous dispersion, have been tested on 0.9 A resolution data 
for two small proteins: rubredoxin, from Desulfovibrio vul- 
garis, and crambin. The presence of three disulfide bridges 
in crambin and an FeS4 unit in rubredoxin enabled auto- 
mated  Patterson interpretation as well as direct methods 
to be tried. Although both structures were already well 
established, the known structures were not used in the 
phasing attempts, except for identifying successful solu- 
tions. Direct methods were not successful for crambin, 
although the correct phases were stable to phase refine- 
ment and gave figures of merit clearly superior to any 
obtained in the ca 500 000 random starting phase sets that 
were refined. It appears that the presence of an iron atom 
in rubredoxin reduces the scale of the search problem by 
many orders of magnitude, but at the cost of producing 
'over-consistent' phase sets that overemphasize the iron 
atom and involve partial loss of enantiomorph information. 
However, about 1% of direct-methods trials were success- 
ful for rubredoxin, giving mean phase errors of about 56 ° 
(for all E > 1.2) that could be reduced to about 20 ° by 
standard E-Fourier recycling methods. Limiting the resolu- 
tion of the data degraded the quality of the solutions and 
suggested that the limiting resolution for routine direct- 
methods solution of rubredoxin is about  1.2 A. With the 
0.9 A data, automated Patterson interpretation convinc- 
ingly finds the three disulfide bridges in crambin and the 
FeS4 unit in rubredoxin, and in both cases E-Fourier recy- 
cling starting from these 'heavier' atoms yields almost the 
complete structure. Whereas crambin could only be solved 
in this way at very high resolution, rubredoxin could be 
solved by Patterson interpretation down to 1.6 ~. These 
results emphasize the benefits of collecting protein data to 
the highest possible resolution, and indicate that when a 
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few 'heavier' atoms are present, it may prove possible in 
favorable cases to solve the phase problem from a single 
native data set collected to 'atomic resolution'. 

I n t r o d u c t i o n  

Direct methods have transformed small-molecule crystal- 
lography in the course of the last three decades, but as 
yet have had only a marginal impact on macromolecular 
crystallography. This could be because macromolecular 
data rarely extend to 'atomic resolution', which is often 
assumed in the derivation of the probability distributions 
which form the basis of direct methods, or it may be sim- 
ply a consequence of the size of the structure, which in- 
evitably weakens the probability distributions, at least for 
individual phase relations. Although overshadowed by the 
succes s  of direct methods, automated Patterson interpreta- 
tion to locate the heavier atoms also provides an efficient 
approach to the solution of small-molecule structures, and 
could in principle be applied to metalloproteins, proteins 
containing disulfide bridges, and polynucleotides. In this 
paper we address the question of whether these 'small- 
molecule' methods are capable of solving the phase prob- 
lem directly for macromolecular structures that happen to 
contain a few heavier atoms, given data to a sufficiently 
high resolution. 

Very few protein data sets have been measured to a 
resolution of better than 1.2 A, which might be regarded 
as a threshold for atomic resolution. It has been suggested 
(Sheldrick, 1990) that direct methods are unlikely to be 
successful in the solution of a 'small-molecule' structure 
if fewer than half of the theoretically measurable reflec- 
tions in the range 1.1-1.2 A are 'observed' [i.e. have F > 
4a(F)], although this rule can be relaxed a little for struc- 
tures containing heavier atoms. Improvements in data col- 
lection, for example rapid cooling techniques and area de- 
tectors, coupled with the use of synchrotron radiation, n o w  
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make it possible to collect complete data sets from a single 
protein crystal before radiation damage becomes signifi- 
cant. This suggests that high-resolution data for macro- 
molecules may become available more often in the near 
future. 

In this paper we have applied small-molecule direct and 
Patterson methods in the form of the program SHELXS92 
(Sheldrick, 1990, 1992) to the solution of two known pro- 
tein structures, rubredoxin (from Desulfovibrio vulgaris) 
and crambin, for which we have collected high-quality 
X-ray diffraction data to about 0.9 A resolution. The ef- 
fect of resolution has been investigated by simply tnm- 
cating the data to the desired resolution; in practice the 
data near the resolution limit would be noisier than in 
these tests. Both proteins happen to crystallize in the space 
group P21; there are 46 residues including three disulfide 
bridges in crambin, and 52 residues including an FeS4 unit 
in rubredoxin. Although there are two other sulfur atoms 
in rubredoxin (in the N-terminal methionine and a bisul- 
fate ion) they both exhibit high thermal motion, and so 
do not function as 'heavier atoms' for the purpose of Pat- 
terson interpretation etc. Small-molecule crystallographers 
usually describe the size (and hence difficulty) of struc- 
tures solved by direct methods in terms of the number of 
non-hydrogen atoms in the asymmetric unit; the largest un- 
known equal-atom structure that has been solved to date by 
direct methods is probably gramicidin A, with 334 unique 
atoms (Langs, 1988). Proteins contain disordered solvent 
and side chains, and it is not quite clear how many atoms 
should be counted; if we count individual atomic sites, 
crambin would rank as roughly a 500-atom structure and 
rubredoxin as 600 atoms. Probably it is more realistic to 
count only fully occupied protein and solvent sites, which 
would be about 350 for crambin and about 400 for rubre- 
doxin. In fact the factor N in the direct-methods probability 
formulas is the number of atoms per (primitive) cell, so 
the space group P21 is relatively advantageous; similarly 
it is the number of atoms per cell that dictates the extent 
of overlap in the Patterson function. 

D a t a  p r e p a r a t i o n  

The measurement of the crambin data has been described 
already (Hope, 1988), as has the refinement of the struc- 
ture based on these data (Teeter & Hope, 1986). Data were 
collected at 130 (2) K from a flash-cooled crystal on a Syn- 
tex P21 four-circle diffractometer with Cu Ks radiation, 
graphite monochromator and locally modified Syntex LT-1 
low-temperature attachment. A fast w scan was used with 
backgrounds based on 200 points distributed over recipro- 
cal space, so that ca 32 000 reflections were measured in 
about 60 h. The resulting data set of 28 727 unique reflec- 
tions is complete out to 1.1 A and 92.5% complete out to 
the limiting resolution of 0.83 A. In the critical 1.1-1.2 ,/k 
range (see above) 81.7% of the theoretically possible data 
have F > 4a(F). 

The rubredoxin data collection and refinement will also 
be described in detail elsewhere. A wavelength of 0.70 A 

was selected at the EMBL beamline X31 at the DESY syn- 
chrotron and a MAR-Research imaging plate scanner em- 
ployed as detector. The short wavelength not only length- 
ened the life of the crystal but also enabled all the data to 
be collected with the plate perpendicular to the incident 
beam, speeding up the data collection. Although the crys- 
tal was at room temperature it showed negligible decay 
during the total data collection time of about 18 h. 74 995 
full and 17 712 partial reflections were processed to give 
26 237 unique reflections that are 98.5% complete to the 
limiting resolution of 0.92 A. These figures refer to the 
merged data set in which Friedel opposites were also av- 
eraged; the corresponding Rint was  0.037. In the 1.1-1.2 A 
range, 92.4% of the theoretically possible reflections were 
'observed' [F > 4a(F)], so both protein data sets very 
comfortably pass the 'atomic resolution' test. 

D i r e c t  m e t h o d s  

The 'phase-annealing' approach has proved to be one of 
the more effective approaches for large 'small-molecule' 
structures, and so was employed here. Only the essential 
details are given here; for a detailed description of the 
method see Sheldrick (1990). A large number of sets of 
random initial phases are refined iteratively, so that each 
step involves a sum over a large number of phase rela- 
tions. At no stage is it necessary to rely on the correctness 
of a single phase relation: the progressive weakening of 
the probabilities of individual relations as the structure 
becomes larger is compensated, at least to a first approx- 
imation, by the increased number of phase relations in- 
volved in each summation. The primary phase refinement 
formula is: 

~h -- 2lEhl~kEkEh - IJN 1/2, 

which is closely related to Sayre's equation (Sayre, 1952) 
and in some form or other still forms the basis of most 
small-molecule direct methods; e.g. see Karle & Karle 
(1966) and Germain, Main & Woolfson (1970). We shall 
consider t~h to be a complex number, i.e. it has a phase as 
well as a magnitude. The 'tangent formula' simply consists 
of iteratively replacing the phase of Eh by its expectation 
value, which is the phase of Cth. We can also define a 
figure of merit based on the agreement of the magnitudes 
of the left and fight sides of this equation: 

/ ~  -- EhWh(~h - (C~h))2 /EhWh~,  

where wh is a weight and where (ab) is the expected 
value of ot (Karle & Karle, 1966; Cascarano, Giacovazzo 
& Viterbo, 1987). Weaker but independent phase informa- 
tion is provided by a summation over 'negative quartets' 
(Schenk, 1974; Hauptman, 1974; Giacovazzo, 1976): 

r/h = 2 l E h l ~ k , l [ E k E I E h  - k - !(2 - IEh - kl 2 
- I E l  - h i  2 - I E k  + d2)]/N, 
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which is restricted to contributors in which IEh- kl, IEi- hl 
and IEk÷ d are all much less than unity. The phase of Oh 
should theoretically be shifted by 180 ° from that of Oth 
(and Eh), so the figure of merit 

NQUAL = ~hReal[~h.~Th]/~hlO~h.~Thl 

should approach the limiting value of -1 for the correct 
phases. In practice this value is only reached for very small 
structures, but since typical false solutions obtained by 
tangent formula refinement tend to have positive NQUAL 
values, NQUAL still provides a useful filter for eliminat- 
ing false solutions. 

Unfortunately, iterative application of the tangent for- 
mula often tends not to a minimum of Ra, but instead 
to a 'uranium-atom solution' in which the individual vec- 
tor terms in the summation for ah line up, i.e. are over- 
consistent, giving a value of a greater than its expected 
value. This is a particularly severe problem in symmorphic 
space groups, e.g. P1, C2 and R3. A closely related prob- 
lem that especially affects polar space groups such as P21 
is the tendency to refine towards a false centrosymmetric 
solution. We should like to retain the computational effi- 
ciency of the tangent formula so as to be able to explore 
a large number of phase sets efficiently, but without these 
side effects. In the phase-annealing approach, the follow- 
ing correction is applied to the tangent formula phase qo: 

IA~I-- cos-' {[4a/kT + ln(R)] /[4a/kT-  ln(R)]l, 

where R is a random number between 0 and 1, and kT 
describes a thermodynamic analogy in which the phases 
should achieve a Boltzmann distribution with a fictitious 
'temperature' T. The twofold sign ambiguity is resolved by 
choosing the sign of Acp so that the resulting phase of Eh is 
closest to that of -oh. This approach has the advantage of 
avoiding over-consistency and also introduces an effective 
search algorithm. A phase set with a small mean a will 
make large excursions until a region of higher mean a 
is reached, and will then tend to be more stable because 
the phase shifts are smaller. As the 'temperature' T is 
gradually reduced, the well defined phases (high a) will 
be subject to smaller fluctuations than those with low a. 
Thus, phases linked by strong phase relations will tend 
to become established earlier in the phase determination 
procedure, while the remaining phases are still free to 
explore phase space until the later stages. 

D i r e c t - m e t h o d s  a t t e m p t s  

For crambin, roughly 500 000 random starting phase sets 
were refined under a wide range of values for all possible 
tuning parameters, but no 'correct' solution could be iden- 
tiffed. The number of phases refined was varied between 
1000 and 2000. Typically, 1500 phases were refined using 
all possible contributors to the right-hand side of the ex- 
pression for ct, corresponding to an average of 137 terms 

for each summation. The summations involving negative 
quartets were restricted to the 12 408 strongest negative 
quartets out of a total of 78 706 that had been generated. 
However, when phases calculated from correct positions 
for the six sulfur atoms were input to the phase refinement, 
the phase refinement proved stable and gave good figures 
of merit (Ra -- 0.16, NQUAL -- -0.31); the best value 
of Ra refining from random phases was 0.18 for solutions 
with negative NQUAL. The E maps obtained starting from 
six sulfur atoms in this way revealed essentially the com- 
plete structure. The figures of merit calculated from the 
correct phases without any phase refinement were Ra = 
0.11 and NQUAL -- -0.13, and the mean ot was 0.90 times 
its estimated value. The difficulty in solving this structure 
from random starting phases appears to be primarily one 
of finding the correct minimum, which may well also be 
the global minimum, in a multi(1500!)-dimensional phase 
space that clearly contains a very large number of incor- 
rect local minima. 

For rubredoxin a completely different picture emerges. 
When 1600 phases were refined with an average of 167 
terms in each c~ summation, and the 13 208 strongest out 
of 152 710 unique negative quartets were employed for r/, 
about 1% of the random starting sets led, after the usual 
E-Fourier recycling (Sheldrick, 1982), to essentially the 
complete structure. Although the figures of merit success- 
fully identified the correct solutions (Ra -- 0.17, NQUAL 
= -0.17), there was some evidence of over-consistency; the 
mean a was about 1.2 times its estimated value. For the 
true phases without refinement, Ra was 0.11 and NQUAL 
was -0.18, with a mean value of a 1.19 times its estimated 
value. As mentioned above, there is some doubt as to how 
to calculate the value for N for use in the probability for- 
mulas in the case of a protein. For these tests we wished to 
avoid using the known structures to 'fine tune' the direct- 
methods parameters, so we used the approximately known 
unit-cell contents (as we would have done for a small mol- 
ecule) to estimate the effective N, and we used all very 
low-angle reflections, even though these are often difficult 
to model in protein refinements. 

To clarify the effect of resolution, we have calculated 
the mean phase error after the phase refinement and af- 
ter each cycle of E-Fourier recycling at various resolu- 
tions; Table 1 gives the values for 0.92 and 1.10 A. As 
the resolution becomes worse, the pseudo-mirror plane 
through the iron atom becomes more pronounced, lead- 
ing to 'over-consistent' phase sets, and the enantiomorph 
resolving power of the E-Fourier recycling is greatly im- 
paired. This imposes an effective resolution limit for the 
successful application of routine direct methods to the 
solution of rubredoxin of about 1.2 A. Clearly the 'heavy' 
atom greatly simplifies the search problem, but there is a 
price to pay in terms of degradation of the quality of the 
resulting solution. 

We have also made a similar analysis of the 0.98 A, data 
for avian pancreatic polypeptide, a 36-residue hormone 
that crystallizes in the polar and symmorphic space group 
C2, and contains one zinc atom in the asymmetric unit 
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Table 1. Mean phase errors (°) for  all E > 1.2for rubre- 
doxin based on the full 0.92/It data (first two columns) 

and data truncated to 1.10/l~ (last two columns) 

A~o+ and Aqo_ are the mean phase errors for the correct and incorrect 
enantiomorphs, respectively. 

Aqo+ Aqo _ Aqo+ Aqo_ 
(0.92) (0.92) (1.10) (1.10) 

Phase refinement 56 68 59 67 
E-Fourier recycling, 46 72 56 72 

cycle 1 
E-Fourier recycling, 36 74 52 73 

cycle 2 
E-Fourier recycling, 27 77 48 75 

cycle 3 
E-Fourier recycling, 21 78 46 76 

cycle 4 
E-Fourier recycling, 20 79 45 77 

cycle 5 

(Glover, Haneef, Pitts, Wood, Moss, Tickle & Blundell, 
1983). Refinement of 1000 phases with an average of 75 
contributors to each ct summation, and a total of 5234 
negative quartets gave a 2% success rate, with the 'correct' 
solutions clearly identified by the combination of Ra (ca 
0.09) and NQUAL (ca 0.0, but +0.3 or greater for all 
wrong solutions with low Ro values). The enantiomorph 
mixing problem was even more severe than for rubredoxin 
- there are no sulfur atoms to alleviate it - but again the E- 
Fourier recycling was able to resolve it. The mean phase 
errors (incorrect enantiomorph in parentheses) were 50 ° 
(56 ° ) after phase refinement and 28 ° (72 ° ) after E-Fourier 
recycling. Avian pancreatic polypeptide can also be solved 
using the same data with the program SAY'FAN (Woolfson 
& Yao, 1990). 

P a t t e r s o n  i n t e r p r e t a t i o n  

For the automated location of heavy atoms in small- 
molecule structures we have found that a computerized 
interpretation of the Patterson vector superposition min- 
imum function is very effective. This method was sug- 
gested in the early 1950's, and a review of the early liter- 
ature may be found in Buerger's (1959) book, where it is 
referred to as the 'vector-shift' method. At the time, hand 
application of this method did not prove very effective 
at solving unknown structures, and it was relatively little 
used until it was revived recently by Richardson & Jacob- 
son (1987), who showed that computer analysis of a single 
vector superposition could solve quite complex problems. 
We adopt a similar general strategy to that of Richardson 
& Jacobson. Since details have been presented elsewhere 
(Sheldrick, 1992), they will only be summarized briefly. 
First a sharpened Patterson is calculated using coefficients 
(E3F) l/2 instead of F 2, and between 1 and 20 suitable peaks 
selected as superposition vectors. For each of these vec- 
tors u, a superposition minimum function is calculated 
by overlaying two copies of the sharpened Patterson that 
have been displaced from the origin by +u/2 and -u/2. If 
a single-weight vector has been chosen for the superposi- 
tion, this map should theoretically contain only one image 

of the structure plus its inverse, i.e. 2N - 2 peaks rather 
than the N 2 - N of the original Patterson. The next stage is 
the analysis of the peak list to locate potential origin shifts 
that will move one of the two images so that its constituent 
atoms conform to the symmetry of the space group; this 
also enables it to be separated from the other image (that 
after the move will in general not obey the space-group 
symmetry). Both this stage and the choice of the original 
superposition vector generate multiple solutions. Richard- 
son & Jacobson performed the origin search in reciprocal 
space, but we employ a real-space algorithm. Finally, all 
solutions are presented in the form of a 'crossword ta- 
ble' that contains one row and one column per potential 
atom. For each row/colunm combination two numbers are 
given: the minimum distance between two atoms and the 
minimum Patterson density at all vectors between the two 
atoms, taking symmetry into account in both cases. The 
most effective figure of merit for comparing the differ- 
ent solutions appears to be the correlation coefficient of 
Fujinaga & Read (1987). 

The automatic selection of 20 superposition vectors 
longer than 1.8/~ for crambin led to three solutions that 
showed all three disulfide bridges and two others that con- 
tained five of the six sulfur atoms. The correct solutions 
also had the highest correlation coefficients; Table 2 shows 
an extract from one of them. In the space group P21, the 
cohmln marked 'self '  gives the lengths (from the Patterson 
origin) and Patterson density associated with the Harker 
vectors 2x, 0.5, 2z. There are two independent contributors 
to each 'cross-vector" Xl - x2, y~ - Y 2 ,  Z l  - Z2 and xl + 
X2, Yl - Y2 + 0 .5 ,  Zl + Z2. The entries in Table 2 consist of 
the minimum length and the minimum Patterson density 
associated with these two vectors. In a higher symmetry 
space group of course more self- and cross-vectors would 
contribute to each entry in Table 2. 

The computer output shown in abbreviated form in Ta- 
ble 2 reveals the three S--S bonds (2.10, 2.02 and 2.11/k) 
that have been marked with asterisks. The minimum Pat- 
terson densities involving all six self-vectors and all 15 
pairs of different sulfur atoms are high except for one 
value of 0.0 and one of 1.1; the Patterson densities in- 
volving the spurious atoms include several zero values. 
E-Fourier recycling starting from these sulfur-atom coor- 
dinates revealed all but 14 of the protein atoms, but it 

• should be noted that crambin has two side chains that are 
disordered because of sequence inhomogeneity! However, 
tests showed that even truncating the resolution by a small 
amount leads to the loss of two or more sulfur atoms in 
the Patterson interpretation, which would have made the 
solution of the structure by this method very difficult had 
it been unknown. 

For rubredoxin with the resolution limit set to values 
in the range 0.9-1.5 ,/k, the solution with the best correla- 
tion coefficient (ca 0.25) can be interpreted easily to find 
the iron atom and the four sulfur atoms to which it is 
bonded, usually as the top five potential atoms, but not 
the methionlne or bisulfate sulfur atoms. The number of 
correct solutions, however, decreases with worsening res- 
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Table 2. Minimum distances (A) and minimum Patterson densities for potential atoms for crambin 

The atomic numbers Z are estimated from the heights of  the symmetry-averaged peaks after applying the origin shift to the vector-superposition map. The 
first double column gives the self-vectors, the remaining columns and rows correspond to the atoms marked at their intersections. There are three spurious 
atoms between $5 and $6. Three S - - S  bonds are indicated by asterisks. 

Self- 
Z x y z vectors 

17. I 0.8932 0 . 0 2 0 8  0.4592 12.82 
10.6 Sl 

Cross-vectors 

12.8 0.8004 -0.0241 0.0984 18.49 8.90 
7.3 9.3 $2 

11.9 0.9361 -0.0211 0.4212 11.16 2.10" 9.04 
7.3 9.5 31.1 $3 

11.7 0.5768 0 . 0 8 1 9  0.0477 11.35 15.80 9.38 16.89 
1.1 7.5 13.0 12.4 S4 

10.9 0.7571 -0.0775 0.1016 18.49 9.84 2.02* 10.21 8.00 
19.2 16.3 6.5 8.1 15.1 $5 

10.7 0.8975 0 . 0 9 9 3  0.2539 16.56 4.81 5.71 4.61 13.82 7.39 
0.5 6.5 1.7 8.8 0.0 10.0 

9.3 0.8161 0 .0187  -0.1343 18.49 9.64 5.30 11.14 10.67 6.08 
0.0 10.9 0.0 6.8 1.0 4.8 

8.4 1.0450 0 . 0 1 9 6  0.6901 13.05 8.01 11.52 7.46 18.32 11.89 
0.9 2.9 0.0 5.4 0.0 0.0 

8.1 0.6090 0 . 1 7 1 3  0.0526 13.02 14.91 8.65 16.00 2.11" 7.66 
19.0 16.3 8.5 3.7 0.0 5.0 

? 

9.37 
0.0 ? 

8.21 10.16 
0.0 4.8 

12.62 9.87 
3.6 0.0 

? 

16.49 
0.0 

olution. At 1.6/1~ there is only one recognizable solution 
(Fe + 3S) in trials with ten superposition vectors, and it 
has the fourth best correlation coefficient (0.15). As the 
data are truncated further, no solutions can be found, even 
when a good superposition vector (from a successful so- 
lution at higher resolution) is used. 

The real test of the Patterson-interpretation approach 
will come when we attempt to solve an unknown 
metalloprotein or protein containing disulfide bridges. 
Very recently we had occasion to collect a syn- 
chrotron/image plate data set on an octapeptide with 
one disulfide bridge per molecule and three octapeptide 
molecules and about 20% water in the asymmetric trait in 
the space group P212121. For all intents and purposes the 
structure behaves like a protein with only 24 residues. This 
structure had defeated exhaustive attempts at solution us- 
ing our 150 K diffractometer data that extended to about 
1.4 A. The room-temperature synchrotron data extended 
to 1.1/It; the solution from the automated Patterson in- 
terpretation with the best correlation coefficient found the 
six sulfur atoms and E-Fourier recycling revealed most of 
the rest of the structure (Kallen, Pohl, Sheldrick, Dauter & 
Wilson, 1992). Direct methods have so far not succeeded 
in solving the structure from the synchrotron data. 

small-molecule field that can be overcome if the resolu- 
tion of the data is adequate. 

In the presence of 'heavier' atoms - even disulfide 
bridges - automated Patterson interpretation may well 
prove successful, and there are indications that it is not 
quite so sensitive to the resolution as are direct meth- 
ods. Methionine sulfur atoms are not nearly as suitable as 
disulfide bridges because they tend to have higher B val- 
ues and because there are no useful distances that could 
be recognized on examining the results of the Patterson 
interpretation. The phosphorus atoms in polynucleotides 
probably fall in between these two extremes. 

We thank Dr I. Moura at the Centro de Tecnologia 
Quimica e Biologica, Oeiras, Portugal, and Dr J. Le Gall 
at the Department of Biochemistry, University of Georgia, 
Athens, GA, USA, for the sample of rubredoxin, Dr M. 
M. Teeter, Boston College, Boston, MA, USA, for the 
sample of crambin, and Dr I. Tickle, Birkbeck College, 
University of London, England, for the avian pancreatic 
polypeptide data. GMS thanks the Leibniz Program of the 
Deutsche Forschungsgemeinschaft for providing an IBM 
RISC/6000-32H workstation, which was used for most of 
the calculations. 

Concluding remarks 

Even if data can be collected to 'atomic resolution' for 
an essentially equal-atom macromolecule, the difficulty 
of finding the correct solution in multidimensional phase 
space in the presence of an astronomical number of false 
local minima may tax the next few generations of comput- 
ers. It seems that the presence of a heavier atom (such as 
the iron atom in rubredoxin) may make the search prob- 
lem tractable at the cost of producing an 'over-consistent' 
phase set. This presents problems well understood in the 
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